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WITh GA~~SIAN INP~~~:LINEAR SYSTE~6

Stamatis Cambanis’

REPRESE)~ ATION, IDE~~IFICATIOH AND I~~~RSE PROBW~

Department of Statistics
University of North Carolina

Chapel Hill , North Carolina 27514

St ary where the series converges in quadratic mean, the in-
tegrals are multiple Wiener integrals and each kernel

The following questions are discussed for non-
linear systems with input Gaussian processes . How can fn(ta ) is a s’ etric function on T~ belonging to a
the syste. be represented? How can the system be i- Hu bert space A 2(.”R) (for detailed definitions the
dentified from the input and output processes? Does reader is referred to (71) - The termsknowledge of the way the system responds to a certain
Gaussian input determine the way it will respond to
another Gaussian input or to a deterministic input? ~

‘n,t 1...! f~(t;t1,. . ~~~~~~ . .X~ dt 1.. ~dt n
• Does knowledge of the system and the statistics of the

output determine the statistics of the input? are homogeneous forms in X of degree a, and they are
uncorrelated for distinct values of n. This represen-Introduction tat ion generalizes the corresponding result of
Wiener’s for white noise X.In studying nonlinear systems with random inputs

one is faced with three broad classes of problems. In
the first class the nonlinear system and the Input are Thus the action of the System 0 on the Gaussian
known, and the problem is to represent the output input X is represented by the sequence of (determinis-
(system representation) and to analyze its statistical tic) kernels {f~), which depends not only on the sys-
properties (system analysis). In the second class the ten 0 but also on the input I through its covariance
input and output are known, or their joint statistics, function R. This representation looks very much like
and the problem is to identify the nonlinear syste. a Volterra kernel expansion with the important differ-
(system identification). And in the third class the ence that th. multiple integrals are Wiener rather
nonlinear system and the output or its statistics are than Lebesgue integrals. Also the kernels
known and the problem is to identify the input or its f (t;t11. . •~i t~ ) do not necessarily vanish , as Volterra
statistics (inverse problem). kernels do, when some t~ is larger then t; but they

Here we concentrate on the special but signifi - have this property when the system is nonanticipatory,
cant case where the random input is Gaussian, and we i.e., when each Y~ depends only on the pastsunmarize certain recent results on these classes of
problems, which lead to several open questions. The {x5, i~ t saT) of X.
list of references is by no means exhaustive and no
mention is made of results for non-Gaussian inputs. Having represented the output of the nonlinear

system, we would like to study its statistical proper-
The nonlinear system is denoted by e and the in- ties. The most interesting question is to find or dc-

‘ 
put and output processes by I - {X

~, 
taT) and scribe the distribution of y or of y , even for fixed

Y {Y~, tET) respectively (where the parameter set T t , i.e., its univariate distribution . is of course
is, say, an interval on the real line and of course a Gaussian process. The distribution of the quadratic
the input and output could have distinct parameter form Y• sets). Unless otherwise stated it will be ass~~ed 2,t is fully described through its characteris-

tic function (6,113. For n � 3 the distribution ofthroughout that 

~~~ 
is not known but Arveson (1] has characterized

• (1) the Gaussian input I is mean square continu-
ous, with mean zero (for simplicity) and all homogeneous forms of the same degree in white fcontinuous covariance function R(t ,s), and noise I which have the same distribution, and it

would be of interest to do this for other Gaussian in-
• j (2) the nonlinear system 0 is such that the out - puts and for systems with finite degree. Another re-

put Y has finite second moments: EY~ < ~~, 
markable result is that the tail of the (univariate)
distribution of the finite degree form

t~~~T.
NAll integrals are over T, which is thus deleted. ~N 

— J1 ~n,t
System Representation and Analysis

determines the degree N (113.It ii shown in (7) that for each t a T ,
When the nonlinear system is time-invariant , in

the sense that fn(tti~ - ~t~) . mn(ti
_t i ~*~tn_t) t• Z f.. .Jf ~(t;t1,.. . ~~~~~~~ ~~~I’ and T is the real line, thenn-l

1~ .1 fn (t 1 t
~ ~tn_ t )Xt •~~Xt dt1...dt~n,t

Work was support ed by the Air Force Office of Scien-
tific Research under Grant AFOSR-7S-2796 . and if I is stationary, Y is strictly station ary .
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Wiener asked the following question: What is the
class of all stationary processes that are time- h a  

{ 
N Nm N

y(t) — • ~ L J.~.t kn (t;t1,...,tn)
• 

invariant transformations of white noise I? It turns 
~~~
“ n.lout that all such processes are strongly mixing (Il l ,and that every strictly stationary ergodic process canbe approximated in law by such processes (this is a x(t1) ...x(t~)dt1. ..dt~}A profound result of Wiener ’s which was clarifi ed by

Nisio--see (11]). Analogs of these results for more obtained by Frdchet (3] for all x(t) in C(a,b] or ingeneral stationary Gaussian inputs I than white noise L2 [a,b] under the ass~~ption that the system is con-are shown in (7]. 
tinuous, In the sense that for each fixed t , y(t) is a
continuous functional on C(a ,b) ‘or L2 (a ,b].Sy~tem Identification

A classical property of “smooth” linear systems,The sequence of kernels 
~~~ 

which represents the namely t ime-invariant linear systems with transferaction of the system 0 on the Gaussian input I can be function, is that they can be identified from theirdetermined from the joint statistics (e.g. moments) of response to exponential inputs: knowledge of the waythe input and output processes x and Y (8] . However, such a linear system responds to exponential inputs ofas was pointed out , these kernels describe the action arbitrary frequency determines its transfer functionof the system only on the Gaussian input I (the ker- and hence how the system will respond to any inputnels depend on the covariance function R of I), and with finite energy. One should likewise determinethe following question arises : Does knowledge of the classes of “smooth” nonlinear systems which can be i-way the system responds to one Gaussian input deter- dentified from their response to appropriate Gaussianmine its response to another Gaussian input or to a inputs. The conjecture here is that if a nonlineardeterministic input? system 0 when acting on a deterministic input in , say,
L2(a,b) has a Volterra input-output relationshipIt is reasonable to expect that knowing how the

system responds to a Gaussian input I, i.e., knowing
the kernels (f~}. would at most reveal how the system y(t) — k0(t) • ~ L J...J kn(t;t1,. ...t~)responds to another Gaussian input I’ which is equiva- n-i
lent to I, and to a deterministic input which is a

• sample function of I (or X ’) ; and would provide no in- x(t i) . . .x(t n)dt i. ..dt~formation on how the system may respond to a Gaussian• input I’ which is singular to I. This question is then knowledge of the way the system responds to aconsidered in [8] . It is shown that the kernels 
~~~ Gaussian input with strictly positive definite covari-in the representation of the system 0 acting on the ance function determines its Volterra kernels {k~J and• Gaussian input X determine the kernels (f~) in the hence how the system will respond to any (admissible)representation of the system acting on an equivalent deterministic or random input. This is shown in [8)Gaussian input I’, provided either one of the follow- under some technical regularity conditions on the sys-ing conditions is satisfied: (i) the nonlinear system tem 0, which are satisfied when 0 has finite degree;is of finite order, (ii) the Radon-Nikodym derivative its proof under no additional ass~~ tions eludes us atof the two Gaussian processes is a bounded random var- present.

iable. However the conjecture is that this result
should be true for general equivalent Gaussian inputs Inverse Problemsand for general (infinite degree) nonlinear systems.

• Unlike system analysis and identification prob-
It is also shown that for some sequence Nm -, lens, where the nonlinear systems studied are allowed

to have memory and/or anticipation, the study of in-with probability one 
verse problems has so far been confined to memoryless
time-invariant nonlinear systems 0:Yt —

N Yt = f(X
~
), t a T ,

+ ~ L f .  ../ hn
a(t;t l,:: ~~ .x~ dt1::.at where f(x) is a function defined on the real line. Inn-i

this case the multiple Wiener integrals in the repre-
where L indicates Lebesgue integral and the kernels sentat iom of become Hermit . polynomials in X~.
{h~) are continuous in (t1,. .., t~) and can be found 

GrUnbaun (4,5] showed that , when the Gaussian in-from the kernels {f~}. Thus knowledge of the way the put I is stationary and has zero mean, its covariance
system acts on a Gaussian input I determines bow the t1o~ R(t) can be identified from the j oint moments
system will act on almost all the sampl, functions of of all orders of the output process Y , for certain• I . This determi nistic input-out put representation de- classes of even nonlineariti.s f(x) , including inter-
pends strongly on the input covariance R, since P de- val-windows f(x) - 1( a ,a) Cx) . In (2] it is shown
t ermines the kernels fh~} and (up to a zero probabili- that when th. mean of the input is zero, the covari-

ancs function R(t) can be constructively identified’ty s.t) the deterministic functions for which the rep- for several classes of nonlinearitles from only theresentation is valid. It is remarkable though that, mean and corrmiation functions of the output V. In-under the extremely weak assumption on the system that cluded here are hard- and soft-limiters, quantizers ,its output has finite second moment, one can obtain even and odd nonlineariti.s , as well as quite generalfor a small class of deterministic inputs a represen- nonhinearities. Also all interval .windowstation identica l in form to the representation f(x) 1(a,b)~~ 
are found for which arbitrary covari-
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ances can be identified. 4. P.A. GrUnb.un, Identifying a Gaussian signal if.
ter a zero-memory filter, Mv. Math . 14 (1974) ,

The constructive identification of th. mean func- 173-1*2.
tion 5(t) of the Gaussian input I from the output mean
and correlation functions is considered in (9] when S. P.A. Galnbarm, Looking at a Gaussian pxoc.ss
the input covarianc. function R(r) is knoim. This is through a window, .1. *altivariat. Anal . 4 (1974) ,
an equivalent formulation of the following interesting 401.40$.
problem: a (nonrandos and unknown) signal 5(t) in ad-
ditive Gaussian noise N with mean zero and known co- 6. T. Hide, Topics on nonlinear filtering theory,
variance function R(t ), 

~~ 
— • N~, is passed P.R. Eriabnaiah, ed., *zltivariat. Analysis • IV

(1977) , 239.241, North-Holland.through a mamoryless nonlinsarity f(s) , and th. prob-
lem is to identify the signal s(t) fec. the mean and 7~ ~•T HUI~~ and S. C~~~anis, Stochastic and multi.correlation functions of the output process V. Not. pie Wiener integrals for Gaussian processes , Ann .that in the absence of noise the signal s(t) ca_amos in Probability 6 (197$) , 585-614.general be identified from f(s(t)J . It is shown in
(9) that arbitrary signals 8. S.T. Huang and S. Caab.nis, On the representation

(i) can be identified when the nonlinearity is of nonlinear systems with Gaussian inputs, Sto.
monotonic, such as a hard- or soft-limiter or chastics 2 (1919) , 173-189.

• an infinite-interval-window;
9. 8. Masry and S. Ca.banis, Signal identif ication(ii) can be identified up to a global sign when after noisy nonlinear transformations , 18ffthe nonlinearity is sy .tric around some 

~~~~ ~~~~~~~~~ Theory IT.26 (1980) , to ap-point x
~
, bounded below or above, and mono-

tonic on such as a full wave even
10. 8. Henry and S. Cambanis, Consistent estimation• vth-law device or a finite-Interval-window. of continuous-time signals fro. nonlinear trans~formations of noisy samples , (1979) , manuscript .The problem of identifying both the ean function

s(t) and the covariance function R(r) of the input I 
~~ H.P. Mclean, Wiener ’s theory of nonlinear noise,remains open at present . in Stochastic Differential Equations , SIAM-MG 6

(I) implies in particular that a signal can be ~ 
(1973), 191-209.

d.ntified fro, the first two moment functions of the
hardlinited version of the signal plus noise:

•
, 

— sgn (s(t) + N
~J . The question thus arises whether

the signal s(t) can actually be estimated from the bi.

noise the signal 5(t) cannot be identified or satimet-
• ed from the binary output sgn[s(t)J . It is shown in

mazy output 
~~~

• Note that in the absence of additive

(10) that by deliberately adding noise (Nk) to the
periodic samples of the signal (54)) prior to hard-
limiting, th. signal 5(t) can be estimated consistent-
ly from the binary sequence {sgn[s4r) + Nh]) as the
sa_apling rate P tends to infinity. The estimate
is in fact shown to converge to the signal s(t) with

• probability one and also to b. asymptotically normal.
The estimator consists of a time-varying linear system ________________________
followed by a a.morylsss tins-invariant nonlinearity, !__ _

~~~~~which can be made linear by a proper Choice of the 
Secti onnoise distrib utioni Thes, results hold for all bound- NTIS White

to the hardliaitor, for further monotonic and nomoono-
tonic nonlineariti es. UNANNOUNC ED 0
.d and uniformly continuous signals and in addition 

\,
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